This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. # Motion-correlated flow distortion and wave-induced biases in air—sea flux measurements from ships J. Prytherch¹, M. J. Yelland², I. M. Brooks¹, D. J. Tupman^{1,*}, R. W. Pascal², B. I. Moat², and S. J. Norris¹ Received: 17 April 2015 - Accepted: 25 May 2015 - Published: 10 June 2015 Correspondence to: J. Prytherch (j.prytherch@leeds.ac.uk) Published by Copernicus Publications on behalf of the European Geosciences Union. iscussion Pa Discussion Paper Discussion Paper Discussion Paper ### **ACPD** 15, 15543–15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction Tables Conclusions References **Figures** Back Close Full Screen / Esc Printer-friendly Version ¹School of Earth and Environment, University of Leeds, Leeds, UK ²National Oceanography Centre, Southampton, UK ^{*}now at: Centre for Applied Geosciences, University of Tuebingen, Tuebingen, Germany Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases, are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to timevarying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. #### Introduction for these mean flow distortion effects for a number of different research vessels (Yelland **ACPD** 15, 15543–15570, 2015 **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Paper Discussion Paper Discussion Paper Discussion Paper Back Printer-friendly Version Interactive Discussion Obtaining direct eddy covariance estimates of turbulent air-sea fluxes from shipmounted sensors is extremely challenging. Measurements of the turbulent wind components must be corrected for the effects of platform motion and changing orientation (Edson et al., 1998; Schulze et al., 2005; Brooks, 2008; Miller et al., 2008). The ship also acts as an obstacle to the air flow forcing it to lift and change speed; this results in both the measured mean wind being biased (accelerated/decelerated) relative to the upstream flow and the effective measurement height being lower than the instrument height. This can significantly bias estimates of the 10 m neutral wind speed (U_{10n}) and the surface exchange coefficients (Yelland et al., 1998). Computational fluid dynamics (CFD) modelling studies of the flow distortion have been used to determine corrections 15544 | ables | Figures | |-------|---------| | | | Close Full Screen / Esc Discussion Paper Back Printer-friendly Version Interactive Discussion et al., 1998, 2002; Dupuis et al., 2003; Popinet et al., 2004; Moat et al., 2005) and also generic corrections for commercial vessels that report meteorological measurements (Moat et al., 2006a, b). The modelled corrections show a strong dependence on the relative wind direction (Yelland et al., 2002; Dupuis et al., 2003) and a much weaker dependence on wind speed, but in general have been determined only for ships with zero pitch and roll angles. Weill et al. (2003) and Brut et al. (2005) reported on experiments with a 1/60 scale physical model of the RV La Thalassa to investigate the effect of pitch and roll angles on the mean flow distortion. They found the tilt of the mean streamline to vary by more than 1° and the mean wind speed by up to 12% for pitch angles between ±10°; these effects were asymmetric about zero pitch. Roll angle had only a small impact on the measured wind speed, about 1% for roll of up to 10°, but this was examined for bow-on flows only and a larger impact might be expected for flows with a significant beam-on component. Comparison of in situ measurements with sonic anemometers. the physical model tests, and CFD modelling also revealed that the foremast itself, along with the instruments and electronics enclosures mounted on it, had a significant impact on flow distortion at the location of the sonic anemometer. The studies of flow distortion cited above addressed only the mean flow for a fixed orientation of the ship with respect to the mean streamline; to the best of our knowledge no studies have investigated the effect of time-varying flow distortion as ship attitude changes. That the time-varying flow distortion has an impact can, however, be inferred from reported biases of ship-based eddy covariance measurements. Edson et al. (1998) compared eddy covariance estimates of the kinematic wind stress from two ships with those from a small catamaran and from the stable research platform FLIP. They found that the ship-based estimates were on average 15 % higher than those from FLIP and the catamaran. They argued that the difference resulted from flow distortion over the ship rather than from inadequate motion correction because the catamaran experienced more severe platform motion. Pedreros et al. (2003) similarly found momentum flux estimates from a ship to be 18% higher than estimates from a nearby #### **ACPD** 15, 15543–15570, 2015 **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page **Abstract** Introduction **Conclusions** References > **Figures** Tables > > ▶1 Close Full Screen / Esc air—sea interaction spar buoy. Evidence of such biases, ascribed to flow distortion, led to the exclusion of ship-based direct flux measurements from the most recent update of the COARE bulk air—sea flux algorithm (v3.5; Edson et al., 2013). Features in cospectra that manifest as significant deviations from the expected spec-5 tral form (e.g. Kaimal et al., 1972) at frequencies associated with wave and platform motion have been reported in observations of momentum fluxes measured from FLIP (Miller et al., 2008) and from fixed platforms (Deleonibus, 1971) and towers (Drennan et al., 1999). A decrease in the magnitude of the feature with height led Miller et al. (2008) to ascribe its source to interactions between the waves and atmospheric turbulence. Edson et al. (2013) analysed wind profile measurements from three field campaigns and found little evidence of wave influence on winds at heights above 4 m in sea conditions with $c_{\rm p}/U_{10{\rm n}}$ < 2.5, where $c_{\rm p}$ is the wave phase speed. In general, reported motion-scale signals in the turbulence have been observed in measurements made either at heights below 10 m (Deleonibus, 1971; Miller et al., 2008) or in conditions of fast, high swell where $c_p/U_{10n} \approx 2$ and $Hs_{swell} \gg Hs_{wind}$, and Hs_{swell} and Hs_{wind} are the significant wave heights of the swell and wind-wave components of the wave field, respectively (Drennan et al., 1999). Recent results from Large Eddy Simulations over moving wave fields also suggest that, in developing sea conditions waves are not expected to significantly influence turbulent winds at heights of more than about 10 m (Sullivan et al., 2014). In summary, the wave field is only expected to influence the turbulent winds near the surface or in conditions where swell dominates the wave field. High frequency gas concentration measurements for studies of air—sea exchange have been shown to suffer significant motion-correlated biases resulting from the hydrostatic pressure change with vertical displacement (Miller et al., 2010), and potentially from mechanical sensitivities of the sensors themselves (McGillis et al., 2001; Yelland et al., 2009; Miller et al., 2010). These biases cause distortions of the cospectra between the vertical wind component and gas concentration (Edson et al., 2011), apparent in the cospectra at frequencies associated with the platform motion, and sev- ACPD 15, 15543–15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction Conclusions References Tables Figures l∢ ≯l ■ Back Close Full Screen / Esc Printer-friendly Version eral recent studies have applied motion decorrelation algorithms to remove this signal (Miller et al., 2010; Edson et al., 2011; Blomquist et al., 2014). Such an approach can also correct the apparent motion-scale bias in the momentum flux, but is controversial since, as discussed above, there are circumstances in which a real wave-correlated signal may be expected in the turbulence measurements. Here we present measurements which demonstrate a significant motion-scale feature in momentum flux measurements from a research ship. We show the impact of applying a simple regression procedure to remove the bias, and provide evidence that suggests the source of the bias is time-varying flow distortion. #### 2 Data The measurements were made on the RRS *James Clark Ross* as part of the Waves, Aerosol and Gas Exchange Study (WAGES), a programme of near-continuous measurements using the autonomous AutoFlux system (Yelland et al., 2009). Turbulent wind components were measured by a Gill R3 sonic anemometer installed above the forward, starboard corner of the ship's foremast platform (Fig. 1). The measurement
volume was approximately 16.5 m above sea level. Platform motion was measured with a Systron Donner MotionPak Mk II, mounted rigidly at the base of the anemometer and sampled synchronously with it. Wave field measurements were made using a WAVEX X-band radar installed above the bridge top. The WAVEX system obtains directional wave spectra and mean wave parameters every five minutes. The fast-response instrumentation operated at 20 Hz, and flux estimates were calculated over 30 min periods. The raw wind and motion measurements were first despiked and the wind components corrected for platform motion using the complementary filtering approach of Edson et al. (1998). The motion correction algorithm set out in Edson et al. (1998) and as usually applied corrects the measured horizontal winds for low frequency horizontal motions (ship's underway velocity) in the earth frame. This neglects the aliasing of the ship's horizontal speed into the vertical imposed by the non- ACPD 15, 15543–15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction Conclusions References Tables Figures I4 ≯I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion Discussion Paper Discussion Paper horizontal mean streamline at the point of measurement due to flow distortion over the ship. The true vertical wind speed, w_{true} is determined from the measured, motioncorrected vertical wind, w_{rel} , and the horizontal true and relative winds (U_{true} and U_{rel}) as $$_{5} W_{\text{true}} = W_{\text{rel}} - \left(\overline{W_{\text{rel}}} \times \left[1 - \overline{U_{\text{true}}} / \overline{U_{\text{rel}}} \right] \right)$$ (1) where overbars indicate a time average (Tupman, 2013). The derivation of Eq. (1) and the impact of applying this correction are described in Appendix A. This correction addresses the same source of measurement error as that recently described by Landwehr et al. (2015) who address it by applying corrections for the ship's low-frequency horizontal velocity after rotating the ship-relative winds (corrected for high frequency motions) into the reference frame of the mean streamline for each flux averaging period. After motion correction, each 30 min record is rotated into a reference frame aligned with the mean streamline, wind components were linearly detrended, and eddy covariance momentum fluxes calculated. CFD modelling of the air flow over the James Clark Ross was initially undertaken by Yelland et al. (2002), but only for flow on to the bow; we have extended the CFD study for a much wider range of relative wind directions and the results were used to determine direction-dependent corrections to the mean (30 min averaged) relative wind speed and measurement height. The new CFD study is documented in Moat and Yelland (2015) and the primary results reproduced here in Appendix B. The modelled wind speed bias at the sensor location varied between -0.9 and 8.4% for wind directions between 20° to port of the bow and 120° to starboard, and the height by which the flow was raised varied between 1.3 and 3.2 m. Wind directions beyond 20° to port of the bow were affected by small-scale obstructions on the foremast platform that are not included in the CFD model; these wind directions are thus excluded from the following analysis. After applying the corrections, the measured winds were corrected to 10 m height and neutral stability using the Businger-Dyer relationships (Businger, 1988) and the 10 m neutral drag coefficient, CD_{10n}, was calculated from U_{10n} and the momentum flux estimates. Paper 15, 15543–15570, 2015 **ACPD** **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page **Abstract** Introduction > Conclusions References > > **Figures Tables** M Close Printer-friendly Version Interactive Discussion The measurements used here were obtained between 9 January and 16 August 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. After excluding measurement periods when the ship was within sea ice, there were 2920 individual flux 5 estimates available for analysis. Flux estimates were then rejected from the analysis where there was excessive ship manoeuvring, where flux quality control criteria failed (Foken and Wichura, 1996; Vickers and Mahrt, 1997), and when the air temperature was less than 2 °C when ice build up may affect the sensors. Of the remaining 1054 flux estimates, 80 were removed as outliers ($CD_{10n} > 5 \times 10^{-3}$). Unless otherwise indicated, mean relative wind direction limits of 20° to port, and 50° to starboard of the bow were applied, a condition met by 499 flux estimates. #### Removal of the ship motion-scale signal Momentum flux cospectra and ogives for U_{10n} between 10 and 14 m s⁻¹, normalised (by f/u_{\star}^2 and $1/u_{\star}^2$, respectively, where f is frequency and u_{\star} is the friction velocity) and averaged, are shown in Fig. 2. The cospectra and ogives differ from the typical forms obtained from experiments over land (e.g. Kaimal et al., 1972) at frequencies between approximately 0.06 and 0.25 Hz (0.09 and 0.37 in the non-dimensionalised frequency shown in Fig. 2), where a significant anomalous signal is present. These frequencies are associated with the platform motion induced by the surface waves; we term this signal the motion-scale signal. At wind speeds above 7 m s⁻¹, the CD_{10n} measurements are biased high compared with previous results (Fig. 3), with the bias relative to the eddy covariance parameterisation of Smith (1980) increasing with wind speed from approximately 20% at 8 m s⁻¹ to 60 % at 20 m s⁻¹. Note that the Smith (1980) parameterisation was derived from eddy covariance measurements made from a slim floating tower moored so as to minimise platform motion and inducing minimal flow distortion. **ACPD** 15, 15543–15570, 2015 **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page **Abstract** Introduction Conclusions References **Figures Tables** > Back Close M Full Screen / Esc Printer-friendly Version The motion-scale signal can be removed from the vertical wind component, and a corrected vertical wind, w_{MSC} , obtained via a simple regression method: $$w'_{MSC} = w'_{true} - \alpha_1 acc'_z - \alpha_2 vel'_z$$ (2) where acc_z and vel_z are the platform's vertical acceleration and velocity, and primes denote fluctuations determined from Reynolds decomposition. The coefficients α_1 and α_2 are determined here by regression for each 30 min flux measurement period. This algorithm, which we term the motion-scale correction (MSC), is based on the regression corrections of Yelland et al. (2009) and Miller et al. (2010). It is also similar to the motion decorrelation algorithm given in a spectral formulation by Edson et al. (2011), originally utilised to remove motion biases from CO_2 flux cospectra, and here termed the MSC_f. The MSC_f algorithm coefficients are defined as the ratio of covariances of vertical wind and platform motion to variances of platform motion. The MSC and MSC_f methods give almost identical results (Fig. 2). Applying the MSC algorithm removes the motion-scale signal (Fig. 2) and results in a 20 to 30 % decrease in CD_{10n} for wind speeds above 7 ms⁻¹ and absolute values similar to those of COARE 3.5 (Fig. 3). The signal removed is similar in size and of the same sign as the biases in ship-based momentum flux measurements reported by Edson et al. (1998) and Dupuis et al. (2003). Applying the MSC to the along-wind component as well as the vertical component makes an insignificant (\ll 1%) additional difference to the measured flux (shown as MSC_{uv} in Figs. 2 and 3). Interpolating the measured cospectra across the motion-scale frequencies gives similar results to the MSC algorithm under most conditions (shown as "interpolated" in Figs. 2 and 3: Prytherch, 2011; Tupman, 2013). However, interpolation requires selection of appropriate frequencies to interpolate between, in this case 0.04 and 0.4 Hz (0.06 and 0.59 in the non-dimensionalised frequency shown in Fig. 2), and is not dependent on a physical variable related to the presumed source of the error (platform motion-dependent flow distortion). For these reasons, correction using the MSC algorithm is preferable. ACPD 15, 15543–15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction Conclusions References Tables Figures I4 ►I **→** Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion Following application of the MSC the drag coefficients are in good agreement with those from the COARE 3.5 bulk algorithm and the cospectral shape matches the Kaimal form expected. This suggests that the motion-scale bias is being effectively removed. It should be noted that COARE 3.5 was derived using wind speeds in the frame of reference of the surface currents, rather than the conventional earth frame (see Appendix in Edson et al., 2013). For surface currents aligned with the prevailing wind direction, adopting a surface current frame of reference would lead to a small apparent increase in the drag coefficients presented here. The close agreement with COARE 3.5 suggests, however, that surface currents do not, on average, significantly affect our results. While several previous studies have ascribed a high bias in drag coefficient estimates from ships to flow distortion (Edson et al., 1998, 2013; Pedreros et al., 2003), they have not examined the effect in detail. Few other studies have discussed such biases at all. and it seems likely that the severity of any motion-correlated bias is highly dependent on
individual platforms and instrument installations in the same manner as the mean flow distortion. The bias is potentially worse here than in many other studies; the sonic anemometer is mounted lower on the foremast than would be ideal because the longterm measurement programme made it necessary to be able to service the instruments easily and without access to a crane. There are also a number of small-scale obstructions such as searchlights near to the measurement point than would be the case on lattice style masts often deployed on dedicated flux measurement campaigns. Because the measurements are continuous and autonomous, a large fraction of our data is also obtained with the ship underway. In contrast, dedicated eddy covariance studies of air-sea exchange would usually focus almost exclusively on measurements made on station when ship motion is less than when underway. Finally it is possible that such biases are present in some fraction of the measurements of many studies, but are excluded from final analysis by quality control procedures without a close examination of **ACPD** Paper Discussion Paper Discussion Paper Discussion Paper 15, 15543–15570, 2015 **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page **Abstract** Introduction **Conclusions** References **Figures** Tables Back Close ▶1 Full Screen / Esc Printer-friendly Version Interactive Discussion Discussion Paper 15, 15543–15570, 2015 **ACPD** **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page **Abstract** Introduction **Conclusions** References **Figures** Tables M Close Back Full Screen / Esc Printer-friendly Version Interactive Discussion the bias being made. Many studies with modest data volumes have quality controlled the individual flux estimates via a visual inspection of the ogive curves, rejecting those that do not closely match the expected form (e.g. Fairall et al., 1997; Norris et al., 2012). As discussed in Sect. 1 above, there is evidence from previous studies that the 5 influence of the wave field on the turbulent winds should be small at heights above some limit which is assumed to be related to the wave properties: values between 4 and 10 m have been cited (Miller et al., 2008; Sullivan et al., 2014). The Sullivan et al. (2014) results correspond to a height of order 1.5 times the significant wave height. Real wave effects are thus expected to be negligible for typical measurement heights of ship-based sensors (15-20 m) under most conditions. Here we provide more direct evidence that the wave-scale signal seen in the WAGES data is due, in large part at least, to the effects of flow distortion over a moving platform. #### 4.1 Motion dependence of the streamline The angle to the horizontal of the airflow measured at the sonic anemometer site was found to be dependent on the vertical motion of the ship (Fig. 4). Perturbations in the tilt of the streamline are approximately in phase with acc, out of phase with the vertical displacement and pitch, and lead vel_z by about 90°. There are multiple processes that may affect the streamline orientation as the ship moves over the waves: - Vertical displacement of the ship changes the vertical extent of the obstacle that the ship presents to the flow and the relative height of the measurement volume with respect to that of the bow above the water line. - The ship's pitch similarly changes both the effective size of the obstacle presented to the flow and the relative location of the sonic anemometer within the distorted flow above the bow. - Vertical motion of the ship will force the overlying air to move. In the example here for $15\,\mathrm{m\,s}^{-1}$, bow-on winds, the airflow tilt varies by about $\pm 3^\circ$ around a mean of approximately 10° . The various parameters shown in Fig. 4a are all inter-dependent, but streamline tilt showed slightly more consistent trends with the velocity and acceleration parameters than with displacement or pitch suggesting that "pumping" of the air above the moving deck may be the dominant effect. #### 4.2 Characteristic frequencies of spectral features For a platform moving through a wave field aligned with the direction of travel, it would be expected that the frequency of ship motion forced by the waves would differ from that for a ship on station with no mean horizontal velocity. The change could be of either sign depending on the ratio of wavelength to the length of the ship, with an increase in frequency for wavelengths much longer than the ship. The measured frequency of atmospheric turbulent structures would also be shifted to higher frequencies relative to those measured when on station. The nature of the frequency shift should differ for turbulent air motions, which advect with the wind and have a ship-relative velocity equal to the sum of wind and ship speeds, and wave-correlated features in the turbulence field which are phase-locked to the surface waves (Sullivan et al., 2000, 2008, 2014), and will have a ship-relative velocity of the sum of wave-phase and ship speeds. A signal due to real wind—wave interaction should thus appear at a different frequency to that from a ship motion-induced measurement bias. Figure 5 shows a comparison of the power spectral density of platform vertical velocity ($S_{\rm velz}$, Fig. 5b) and frequency weighted cospectral densities for the streamwise momentum flux (normalised by u_*) both for periods during which the ship was on station ($V_{\rm ship} < 1~{\rm m\,s}^{-1}$, where $V_{\rm ship}$ is the speed of the ship) and when underway ($V_{\rm ship} > 5~{\rm m\,s}^{-1}$). The cospectra are shown both before (Fig. 5d) and after (Fig. 5c) applying the standard motion correction to the measured turbulent velocity components, ACPD 15, 15543–15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Introduction References **Figures** ▶1 Title Page Abstract Into Conclusions Re Tables F Discussion Paper Discussion Paper Discussion Paper Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion Discussion Paper Back Printer-friendly Version Interactive Discussion but without applying the MSC correction. Also shown are the spectral densities of the surface wave field (Fig. 5a). The wave radar provides wave spectra in the earth frame, corrected for ship speed; in order to compare these directly with the measured turbulence and ship-motion spectra when underway we need to transform them into a reference frame moving with the ship. This is achieved by plotting against a modified frequency, $f_{\rm m} = f_0(c_{\rm p} + V_{\rm ship})/c_{\rm p}$, where $f_{\rm m}$ is the frequency that would be measured in the ship reference frame and f_0 is the true frequency in the earth frame. The periods chosen all have bow-on winds, wind speeds of between 10 and 12 ms⁻¹ and similar sea states: the (true) mean peaks of the mean WAVEX-derived non-directional wave spectra (S_{zwave}) are 0.120 and 0.110 Hz, and mean significant wave heights are 4.73 and 3.51 m for the stationary and underway periods, respectively. For the on station measurements, the peak in the momentum flux cospectra (no MSC, Fig. 5c) is at 0.115 Hz, which matches that of the peak in ship vertical velocity (Fig. 5b) and is at slightly lower frequency than the peak in the ship-frame surface wave spectra (0.120 Hz, Fig. 5a). The peak in the cospectra prior to motion correction (Fig. 5d) is at a slightly higher frequency (0.125 Hz) than that of the waves. For the underway cases the peak in the ship-frame wave spectra is shifted to higher frequency (0.163 Hz) compared to the true spectra. The peak in the ship motion spectrum (0.145 Hz) is again lower than that of the wave spectrum and by a larger margin than for the on station case. Again, the peak in the momentum flux cospectrum matches that of the ship motion. The peak in the cospectrum prior to motion correction at 0.155 Hz lies between those of the modified wave spectrum and ship motion. The correspondence of the peak in momentum flux cospectra with that of the ship motion rather than that of the wave field suggest that the residual signal after motion correction is an artefact of motion-correlated flow distortion rather than a result of a real wave-correlated signal in the turbulence. **ACPD** 15, 15543–15570, 2015 **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page **Abstract** Introduction **Conclusions** References > **Figures Tables** M Close Full Screen / Esc Mean flow distortion is strongly dependent on relative wind direction (Yelland et al., 1998), even for a motionless ship with zero pitch and roll angles. The dependence of the calculated drag coefficients on relative wind direction before and after applying the MSC algorithm is shown in Fig. 6. First, a linear fit was made between the drag coefficient and wind speed data obtained for wind directions between -20 and +50 degrees of the bow. Then the drag coefficient anomalies (individual minus fit) were calculated and averaged into 10° relative wind direction bins, and the results were plotted against relative wind direction. It can be seen that prior to applying the MSC algorithm the drag coefficient anomalies have a significant dependence on relative wind direction, and that application of the algorithm significantly reduces this dependence. For completeness the results are also shown without first applying the direction-dependent CFD-derived correction to the mean, 30 min averaged, wind speed; this also reduces the dependence of the drag coefficient on relative wind direction. Application of the MSC and the mean CFD correction does not completely remove all dependence of the drag coefficient on relative wind direction. This suggests that one or both
corrections may need refinement. In the case of the MSC algorithm, the effect of the roll of the ship is likely to become significant when the wind direction is beamon rather than bow-on. In the case of the CFD correction to the mean wind speed, the model of the ship geometry may have to be refined to take into account local flow distortion caused by small objects mounted on the foremast, close to the anemometer. These are areas for future investigation. #### **Conclusions** Methods for removal of motion-correlated signals from fast-response gas measurements made onboard moving platforms have become more commonly applied in recent years; however, these techniques remain controversial when applied to fast-response **ACPD** Paper Discussion Paper 15, 15543–15570, 2015 **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Discussion Paper Discussion Paper Introduction **Abstract Conclusions** References **Figures** Tables Back Close Full Screen / Esc ▶1 Printer-friendly Version Interactive Discussion winds for the purpose of momentum flux calculation. The results here demonstrate these methods and their impact on ship-based momentum flux measurements where a significant motion-correlated bias is present in the motion-corrected cospectra. The motion-correlated signals are shown to be dependent on platform velocity relative to the wave field. In addition, the dependence of the flux on wind direction relative to the ship is reduced after applying the correction methods. These results suggest that the motion-correlated signal is due to the effects of time-varying flow distortion. Further investigation is required to resolve the details of the physical processes involved. The recent revision of the COARE bulk flux algorithm (COARE 3.5, Edson et al., 2013) is determined only from data from platforms other than ships (buoys, towers, FLIP). These data all require motion correction, but the platforms generally do not suffer such significant flow distortion problems as ships. Ship measurements were excluded from the COARE 3.5 development explicitly because of evidence of the potential for biases resulting from flow distortion. For many applications however, ship-based measurements are the only option; for example, direct eddy covariance measurements of gas transfer require instrumentation that can only realistically be operated on a ship. A means of effectively dealing with biases induced by flow distortion is thus essential. The methods demonstrated above provide a successful correction; after its application our drag coefficient results agree with COARE 3.5. #### Appendix A: Underway vertical wind speed The motion correction algorithm of Edson et al. (1998) calculates a total platform velocity in the earth frame as the sum of highpass filtered wave-induced motions, obtained from the integration of accelerometers, and lowpass filtered velocities (the platform's underway motion). The latter are applied only in the horizontal since the mean vertical velocity is zero by definition. The corrected winds in the earth frame are obtained as the vector sum of measured and platform velocities. This neglects the impact of flow distortion on the measured winds (Fig. A1). At the point of measurement on the foremast **ACPD** 15, 15543–15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction Conclusions References Tables Figures 14 PI Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion When conditions are stationary (an implicit assumption for direct flux measurement) the measured, motion-corrected vertical wind, $w_{\rm rel}$, can be corrected for the horizontal platform mean velocity to obtain the true vertical wind speed $w_{\rm true}$. The ratio of the mean true to mean relative vertical winds is equal to the ratio of the mean true to mean relative horizontal winds. i.e. $$\frac{\overline{U_{\text{true}}}}{\overline{U_{\text{rel}}}} = \frac{\overline{w_{\text{true}}}}{\overline{w_{\text{rel}}}}$$ (A1) (Fig. A1). Then, as $$W_{\text{true}} = W_{\text{rel}} - \left(\overline{W_{\text{rel}}} - \overline{W_{\text{true}}}\right)$$ (A2) w_{true} can be determined via Eq. (1) $$w_{\text{true}} = w_{\text{rel}} - \left(\overline{w_{\text{rel}}} \times \left[1 - \overline{U_{\text{true}}}/\overline{U_{\text{rel}}}\right]\right).$$ Note that this affects the mean vertical wind only, not the high frequency perturbations; however failure to account for the impact of flow distortion on the vertical wind measurements would result in the streamline orientation being incorrectly calculated, and both u' and w' values being biased after rotation into the streamline-oriented reference frame in which the fluxes are calculated. The effectiveness of this correction is demonstrated through comparison of drag coefficients from periods when the ship was stationary ($V_{\text{ship}} < 1 \,\text{m s}^{-1}$) and underway ($V_{\text{ship}} > 5 \,\text{m s}^{-1}$). Prior to correction, measurements from the underway ship are biased ACPD Discussion Paper Discussion Paper Discussion Paper 15, 15543–15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction References Tables Conclusions Figures Full Screen / Esc Printer-friendly Version Interactive Discussion Discussion Back Close Printer-friendly Version Interactive Discussion high relative to the stationary measurements (Fig. A2). Following correction, the stationary and underway measurements are in very good agreement for all but the very lowest wind speeds. Furthermore, for stationary periods (where the effect is small), the corrected and uncorrected results are also in good agreement. #### Appendix B: CFD corrections for flow distortion The relative wind direction dependent CFD corrections for the mean flow distortion over the ship are given in Table B1. These are strictly valid only for the location of our sonic anemometer (1.24 m to starboard, 16.5 m above the waterline, and 5.0 m aft of the bow), but should be broadly representative for nearby locations, and indicative of the directionally dependent flow distortion that might be expected on any similar installation on other ships. Acknowledgements. WAGES was funded by the Natural Environment Research Council (grant numbers NE/G00353X/1 and NE/G003696/1). We would like to thank the two captains and crews of the RRS James Clark Ross and the ship logistics support staff at the British Antarctic Survey for their help throughout the project. #### References Blomquist, B. W., Huebert, B. J., Fairall, C. W., Bariteau, L., Edson, J. B., Hare, J. E., and McGillis, W. R.: Advances in air-sea CO₂ flux measurement by eddy correlation, Bound.-Lay. Meteorol., 1-32, doi:10.1007/s10546-014-9926-2, 2014. Brooks, I. M.: Spatially Distributed Measurements of Platform Motion for the Correction of Ship-Based Turbulent Fluxes, J. Atmos. Ocean. Technol., 25, 2007-2017, doi:10.1175/2008JTECHA1086.1. 2008. Brut, A., Butet, A., Durand, P., Caniaux, G., and Planton, S.: Air-sea exchanges in the equatorial area from the EQUALANT99 dataset: Bulk parameterizations of turbulent fluxes corrected for airflow distortion, Q. J. Roy. Meteorol. Soc., 131, 2497–2538, doi:10.1256/qj.03.185, 2005. 15, 15543–15570, 2015 **ACPD** **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction **Conclusions** References > **Figures** Tables > > M Full Screen / Esc **ACPD** 15, 15543-15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction Conclusions References Tables **Figures** - **→** - Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion © BY - Businger, J. A.: A note on the Businger–Dyer profiles. Bound.-Lay. Meteorol., 42, 145–151, doi:10.1007/978-94-009-2935-7 11, 1988. - Deleonibus, P.: Momentum flux and wave spectra observations from an ocean tower. J. Geophys. Res., 76, 6506–6527, doi:10.1029/JC076i027p06506, 1971. - Drennan, W., Kahma, K., and Donelan, M.: On momentum flux and velocity spectra over waves, Bound.-Lay. Meteorol., 92, 489–515, doi:10.1023/A:1002054820455, 1999. - Dupuis, H., Geurin, D., Hauser, D., Weill, A., Nacass, P., Drennan, W. M., Cloche, S., and Graber, H. C.: Impact of flow distortion corrections on turbulent fluxes estimated by the inertial dissipation method during the FETCH experiment on R/V L'Atalante, J. Geophys. Res., 108, 8064, doi:10.1029/2001JC001075, 2003. - Edson, J. B., Hinton, A. A., Prada, K. E., Hare, J. E., and Fairall, C. W.: Direct covariance flux estimates from mobile platforms at sea, J. Atmos. Ocean. Tech., 15, 547–562, doi:10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO:2. 1998. - Edson, J. B., Fairall, C. W., Bariteau, L., Zappa, C. J., Cifuentes-Lorenzen, A., McGillis, W. R., Pezoa, S., Hare, J. E., and Helmig, D.: Direct covariance measurement of CO₂ gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: Wind speed dependency, J. Geophys. Res., 116, C00F10, doi:10.1029/2011JC007022, 2011. - Edson, J. B., Venkata Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.: On the exchange of momentum over the open ocean, J. Phys. Oceanogr., 43, 1589–1610, doi:10.1175/JPO-D-12-0173.1, 2013. - Fairall, C. W., White, A. B., Edson, J. B., and Hare, J. E.: Integrated shipboard measurements of the marine boundary layer, J. Atmos. Ocean. Technol., 14, 338–359, doi:10.1175/1520-0426(1997)014<0338:ISMOTM>2.0.CO;2, 1997. - Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux measurements 1, Agr. Forest Meteorol., 78, 83–105,
doi:10.1016/0168-1923(95)02248-1, 1996. - Kaimal, J. C., Izumi, Y. J., Wyngaard, C., and Cote, R.: Spectral characteristics of surface-layer turbulence, Q. J. Roy. Meteorol. Soc., 98, 563–589, doi:10.1002/qj.49709841707, 1972. - Landwehr, S., O'Sullivan, N., and Ward, B.: Direct Flux Measurements from Mobile Platforms at Sea: Motion and Air-Flow Distortion Corrections Revisited, J. Atmos. Ocean. Technol., online early view, doi:10.1175/JTECH-D-14-00137.1, 2015. - McGillis, W. R., Edson, J. B., Hare, J. E., and Fairall, C. W.: Direct covariance air—sea CO₂ fluxes, J. Geophys. Res.-Oceans, 106, 16729–16745, doi:10.1029/2000JC000506, 2001. **ACPD** 15, 15543–15570, 2015 **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. - Title Page Abstract Introduction **Conclusions** References - Tables **Figures** - \triangleright - Back Close - Full Screen / Esc - Printer-friendly Version - Interactive Discussion - Miller, S. D., Hristov, T. S., Edson, J. B., and Friehe, C. A.: Platform motion effects on measurements of turbulence and air-sea exchange over the open ocean, J. Atmos. Ocean. Technol., 25, 1683-1694, doi:10.1175/2008JTECHO547.1, 2008. - Miller, S. D., Marandino, C., and Saltzman, E. S.: Ship-based measurement of airsea CO₂ exchange by eddy covariance, J. Geophys. Res.-Atmos., 115, D02304, doi:10.1029/2009JD012193, 2010. - Moat, B. I. and Yelland, M. J.: Airflow distortion at instrument sites on the RRS James Clark Ross during the WAGES project. National Oceanography Centre, Southampton, UK Internal Document No. 12, available at: http://eprints.soton.ac.uk/373216/, last access: 16 January 2015. - Moat, B. I., Yelland, M. J., Pascal, R. W., and Molland, A. F.: An overview of the airflow distortion at anemometer sites on ships, Int. J. Climatol., 25, 997-1006, doi:10.1002/joc.1177, 2005. - Moat, B. I., Yelland, M. J., and Molland, A. F.: Quantifying the airflow distortion over merchant ships. Part II: application of the model results, J. Atmos. Ocean. Technol., 23, 351-360, doi:10.1175/JTECH1859.1. 2006a. - Moat, B. I., Yelland, M. J., Pascal, R. W., and Molland, A. F.: Quantifying the airflow distortion over merchant ships. Part I: validation of a CFD model, J. Atmos. Ocean. Tech., 23, 341-350, doi:10.1175/JTECH1858.1, 2006b. - Norris, S. J., Brooks, I. M., Hill, M. K., Brooks, B. J., Smith, M. H., and Sproson, D. A. J.: Eddy Covariance Measurements of the Sea Spray Aerosol Flux over the Open Ocean. J. Geophys. Res., 117, D07210, doi:10.1029/2011JD016549, 2012. - Pedreros, R., Dardier, G., Dupuis, H., Graber, H. C., Drennan, W. M., Weill, A., Geurin, C., and Nacass, P.: Momentum and heat fluxes via the eddy correlation method on the R/V L'Atalante and an ASIS buoy, J. Geophys. Res., 108, C11, doi:10.1029/2002JC001449, 2003. - 25 Popinet, S., Smith, M., and Stevens, C.: Experimental and numerical study of turbulence characteristics of airflow around a research vessel, J. Atmos. Ocean. Tech., 21, 1575-1589, doi:10.1175/1520-0426(2004)021<1575:EANSOT>2.0.CO;2, 2004. - Prytherch, J.: Measurement and parameterisation of the air-sea CO₂ flux in high winds. PhD thesis, University of Southampton, 2011. - 30 Schulze, E. W., Sanderson, B. G., and Bradley, E. F.: Motion correction for shipborne turbulence sensors. J. Atmos. Ocean. Technol., 22, 44-69, doi:10.1175/JTECH-1685.1, 2005. - Smith, S.: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709-726, doi:10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2, 1980. - Sullivan, P. P., McWilliams, J. C., and Moeng, C.-H.: Simulation of turbulent flow over idealized water waves, J. Fluid. Mech., 404, 47–85, doi:10.1017/S0022112099006965, 2000. - Sullivan, P. P., Edson, J. B., Hristov, T., and McWilliams, J. C.: Large-eddy simulations and observations of atmospheric marine boundary layers above non-equilibrium surface waves, J. Atmos. Sci., 65, 1225–1245, doi:10.1175/2007JAS2427.1, 2008. - Sullivan, P. P., McWilliams, J. C., and Patton, E. G.: Large-Eddy Simulation of Marine Atmospheric Boundary Layers above a Spectrum of Moving Waves, J. Atmos. Sci., 71, 4001–4027, doi:10.1175/JAS-D-14-0095.1, 2014. - Tupman, D. J.: Air—sea flux measurements over the Southern Ocean, PhD thesis, University of Leeds, 176 p., Leeds, UK, 2013. - Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Technol., 14, 512–526, doi:10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997. - Weill, A., Eymard, L., Caniaux, G., Hauser, D., Planton, S., Dupuis, H., Brut, A., Guerin, C., Nacass, P., Butet, A., Cloché, S., Perderos, R., Durand, P., Bourras, D., Giordani, H., Lachaud, G., and Bouhours. G.: Toward a Better Determination of Turbulent Air—Sea Fluxes from Several Experiments, J. Climate, 16, 600–618, doi:10.1175/1520-0442(2003)016<0600:TABDOT>2.0.CO;2, 2003. - Yelland, M. J., Moat, B. I., Taylor, P. K., Pascal, R. W., Hutchings, J., and Cornell, V. C.: Wind stress measurements from the open ocean corrected for airflow distortion by the ship, J. Atmos. Ocean. Technol., 28, 1511–1526, doi:10.1175/1520-0485(1998)028<1511:WSMFTO>2.0.CO;2, 1998. - Yelland, M. J., Moat, B. I., Pascal, R. W., and Berry, D. I.: CFD model estimates of the airflow distortion over research ships and the impact on momentum flux measurements, J. Atmos. Ocean. Technol., 19, 1477–1499, doi:10.1175/1520-0426(2002)019<1477:CMEOTA>2.0.CO;2, 2002. - Yelland, M., Pascal, R., Taylor, P., and Moat, B.: AutoFlux: an autonomous system for the direct measurement of the air–sea fluxes of CO₂, heat and momentum, J. Operation. Oceanogr., 15–23, doi:10.1080/1755876X.2009.11020105, 2009. **ACPD** 15, 15543–15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Full Screen / Esc Back Close Printer-friendly Version Table B1. Variation of wind speed bias and vertical flow displacement with relative wind direction, determined at the location of the AutoFlux anemometer (height above sea level, z, 16.5 m). The wind speed bias and Δz are relative to a free stream location 2 s upstream of the anemometer site (after Yelland et al., 2002). A negative relative wind direction indicates a flow over the port side. Further details are given in Moat and Yelland (2015). | Relative wind direction (°) | Wind speed bias at $z - \Delta z$ (%) | Δ <i>z</i> (m) | |-----------------------------|---------------------------------------|----------------| | -20 | 2.98 | 1.44 | | -10 | 0.41 | 1.35 | | 0 | -0.39 | 1.32 | | 10 | -0.86 | 1.41 | | 20 | 0.7 | 1.54 | | 30 | 2.92 | 1.76 | | 50 | 5.11 | 2.27 | | 70 | 4.86 | 2.73 | | 90 | 8.35 | 2.96 | | 110 | 6.97 | 3.15 | 15, 15543-15570, 2015 **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Introduction **Abstract** Conclusions References **Tables Figures I**◀ \triangleright **Back** Close Full Screen / Esc Printer-friendly Version Interactive Discussion 15, 15543-15570, 2015 #### **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements **ACPD** J. Prytherch et al. Introduction References **Figures** ÞΙ Close **Printer-friendly Version** Interactive Discussion ## Title Page **Abstract** Conclusions **Tables Back** Full Screen / Esc Turbulence instruments Figure 1. Locations of the flux instrumentation on the RRS James Clark Ross. Note that the forecastle crane is generally stowed close to the deck while the ship is underway or on station. Discussion Paper **Figure 2.** Frequency-weighted and normalised momentum flux cospectra **(a)** and normalised ogives **(b)**, shown relative to frequency non-dimensionalised using measurement height z and mean relative wind speed $U_{\rm rel}$. Results shown are an average of 131 30 min duration measurements at mean wind speeds $10\,{\rm m\,s}^{-1} < U_{10n} < 14\,{\rm m\,s}^{-1}$. EC indicates the cospectra after removing platform motion following Edson et al. (1998) and shows the residual signal at scales typical of the wave field. The interpolation across the wave scales has been applied between frequencies of 0.04 and 0.4 Hz. The MSC can either be applied as per Eq. (2) (MSC), with Eq. (2) applied to both the along and vertical wind components (MSC_{uw}), or as described by Edson et al. (2011) (MSC_f). Normalisation of the five different sets of results is by u_* with MSC applied as per Eq. (2). Note that the MSC_f line overlies the MSC line at all frequencies, and the interpolated, MSC_{uw} and EC lines for frequencies away from the motion-scale. 15, 15543-15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction Conclusions References Tables Figures **4** ►I ■ Back Full Screen / Esc **Printer-friendly Version** **Figure 3.** Drag coefficients bin-averaged by wind speed, relative to U_{10n} (n = 499). Measurements are shown either without correction for wave-scale bias (EC), or with correction applied to the vertical velocity only (MSC), both vertical and horizontal velocity components (MSC_{1,w}), or via a simple interpolation across the wave-scale portion of the cospectra (interpolated). The bulk COARE 3.5 (Edson et al., 2013) results are calculated without dependence on wave field or radiation. 15, 15543-15570, 2015 **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page **Abstract** Introduction Conclusions References **Figures Tables** Back M Full Screen / Esc Printer-friendly Version Figure 4. (a) Time series (60 s) of vertical platform displacement, velocity and acceleration, platform pitch, and tilt from horizontal of the streamwise airflow measured by the AutoFlux anemometer. The tilt has been smoothed with a 40-sample moving average. The measurements are sampled from a period (23 April
2013, 21:00-21:30 UTC) with near bow-on winds and mean U_{100} of 15.2 m s⁻¹. (b) Variation of the tilt of streamwise airflow from horizontal, relative to the vertical platform displacement, velocity, acceleration and platform pitch each normalised by their measured range. Tilt averages were made over the 30 min period that the measurements in (a) were sampled from. 15, 15543-15570, 2015 **Motion-correlated** flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Introduction **Abstract** Conclusions References Tables **Figures** M Full Screen / Esc Printer-friendly Version **Figure 5.** Comparison of averaged spectra. In all panels two sets of averaged data are compared, periods when the ship was stationary ($V_{\rm ship} < 1\,{\rm m\,s}^{-1}$, 21 periods) and periods when the ship was steaming ($V_{\rm ship} > 5\,{\rm m\,s}^{-1}$, 20 periods); the individual spectra are shown as pale lines for reference. For all measurements, $U_{\rm 10n}$ was between 10 and $12\,{\rm m\,s}^{-1}$. (a) Spectral density of non-directional wave heights from WAVEX with frequency shifted to the reference frame of the moving ship; (b) spectral density of platform vertical velocity as measured on the foremast; (c) frequency-weighted cospectral density for the momentum flux–turbulent velocity components are motion corrected, but the MSC correction is not applied; (d) frequency-weighted cospectral density for the momentum flux calculated prior to motion correcting the turbulent velocity components. The dashed vertical lines indicate the peak frequency of the wave spectrum; dotted vertical lines indicate the peak frequency of the momentum flux cospectra in (c). 15, 15543-15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction Conclusions References Tables Figures I**⊲** ►I ■ Image: Close State S Full Screen / Esc Printer-friendly Version **Figure 6. (a)** Measurements either without correction for wave-scale bias (EC), or with correction applied to the vertical velocity only (MSC) for wind speeds $7\,\mathrm{m\,s^{-1}} < U_{10n} < 16\,\mathrm{m\,s^{-1}}$ (n = 335), and relative wind directions between -20° and $+50^\circ$ (where a wind on the bow is at 0°). Lines are linear fits to the measurements. **(b)** variation of the difference between measured drag coefficients and the linear fits against relative wind direction for the same wind speed criteria (n = 663). Both panels also show measurements (with and without MSC) which have not had CFD-derived corrections to mean wind speed and height applied. Note that CFD corrections were only applied for the shaded range. 15, 15543-15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction Conclusions References Tables Figures I ◀ ▶1 ■ Back Full Screen / Esc Printer-friendly Version **Figure A1.** Schematic of the impact of ship horizontal velocity on non-horizontal airflow. The measured horizontal (U_{rel}) and vertical (w_{rel}) wind components must both be corrected for ship velocity to obtain the true wind components. Not correcting the measured vertical wind will result in an incorrect determination of the tilt angle of the flow from horizontal. 15, 15543-15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. **Back** Full Screen / Esc Close Printer-friendly Version **Figure A2.** Wind speed-averaged drag coefficients, relative to U_{10n} . Two sets of measurements are compared: where the ship was deemed stationary ($V_{\text{ship}} < 1 \, \text{m s}^{-1}$, n = 233); and where the ship was underway ($V_{\text{ship}} > 5 \, \text{m s}^{-1}$, n = 182). The measurements are shown with ("corr") and without the vertical wind speed corrected as per Eq. (1). 15, 15543–15570, 2015 Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements J. Prytherch et al. Title Page Abstract Introduction Conclusions References Tables Figures I ← ►I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion